Section 7.8: Improper Integrals

Story behind
$$\int_{1}^{\infty} \frac{1}{x^2} dx$$
 ...

Ex 1: Find
$$\int_1^\infty \frac{1}{x^2} dx$$

1 Definition of an Improper Integral of Type 1

(a) If $\int_a^t f(x) dx$ exists for every number $t \ge a$, then

$$\int_{a}^{\infty} f(x) \ dx = \lim_{t \to \infty} \int_{a}^{t} f(x) \ dx$$

provided this limit exists (as a finite number).

1 Definition of an Improper Integral of Type 1

(b) If $\int_t^b f(x) dx$ exists for every number $t \le b$, then

$$\int_{-\infty}^{b} f(x) \, dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) \, dx$$

provided this limit exists (as a finite number).

Def:

- 1. $\int_{a}^{\infty} f(x) dx$ is <u>convergent</u> it is a (finite) number. I.e. the limit that defines it exists. Otherwise it's divergent.
- 2. $\int_{-\infty}^{b} f(x) dx$ is <u>convergent</u> it is a (finite) number. I.e. the limit that defines it exists. Otherwise it's <u>divergent</u>.

1 Definition of an Improper Integral of Type 1

(c) If both $\int_a^\infty f(x) dx$ and $\int_{-\infty}^a f(x) dx$ are convergent, then we define

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{\infty} f(x) dx$$

In part (c) any real number a can be used (see Exercise 76).

1 Definition of an Improper Integral of Type 1

(c) If both $\int_a^\infty f(x) dx$ and $\int_{-\infty}^a f(x) dx$ are convergent, then we define

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{\infty} f(x) dx$$

In part (c) any real number a can be used (see Exercise 76).

<u>Def</u>:

3. If both $\int_{-\infty}^{a} f(x) dx$ and $\int_{a}^{\infty} f(x) dx$ are both convergent for some number a, then $\int_{-\infty}^{\infty} f(x) dx$ is convergent. Otherwise $\int_{-\infty}^{\infty} f(x) dx$ is divergent.

Ex 2: Find
$$\int_{1}^{\infty} \frac{1}{x} dx$$
 (compare to ex 1)

Ex 3: Find
$$\int_{-\infty}^{0} xe^{x} dx$$

Ex 4: Find
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$$

Ex 5: Find $\int_{-\infty}^{\infty} \sin(x) dx$

Ex 6: For what values of p does $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ converge?

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx$$
 is convergent if $p > 1$ and divergent if $p \le 1$.

Story behind
$$\int_{-2}^{5} \frac{1}{x} dx$$
 ...

3 Definition of an Improper Integral of Type 2

(a) If f is continuous on [a, b) and is discontinuous at b, then

$$\int_a^b f(x) \ dx = \lim_{t \to b^-} \int_a^t f(x) \ dx$$

if this limit exists (as a finite number).

3 Definition of an Improper Integral of Type 2

(b) If f is continuous on (a, b] and is discontinuous at a, then

$$\int_a^b f(x) \ dx = \lim_{t \to a^+} \int_t^b f(x) \ dx$$

if this limit exists (as a finite number).

Def:

4. If f is continuous on [a,b) but not continuous at b, then $\int_a^b f(x) dx$ is <u>convergent</u> it is a (finite) number. I.e. the limit that defines it exists. Otherwise it's <u>divergent</u>.

5. If f is continuous on (a,b] but not continuous at a, then $\int_a^b f(x) dx$ is <u>convergent</u> it is a (finite) number. I.e. the limit that defines it exists. Otherwise it's <u>divergent</u>.

3 Definition of an Improper Integral of Type 2

(c) If f has a discontinuity at c, where a < c < b, and both $\int_a^c f(x) dx$ and $\int_c^b f(x) dx$ are convergent, then we define

$$\int_a^b f(x) \ dx = \int_a^c f(x) \ dx + \int_c^b f(x) \ dx$$

<u>Def</u>:

6. If f is continuous everywhere on [a, b] except at a number c between a and b, and both $\int_a^c f(x) dx$ and $\int_c^b f(x) dx$ are both convergent, then $\int_a^b f(x) dx$ is convergent. Otherwise $\int_a^b f(x) dx$ is divergent.

Ex 7: Find
$$\int_2^5 \frac{1}{\sqrt{x-2}} dx$$

Ex 8: Is $\int_0^{\pi/2} \sec(x) dx$ convergent or divergent?

Ex 9: Find
$$\int_0^3 \frac{1}{x-1} dx$$

Ex 10: Find
$$\int_0^1 \ln(x) dx$$

Comparison Test For Improper Integrals

Comparison Theorem Suppose that f and g are continuous functions with $f(x) \ge g(x) \ge 0$ for $x \ge a$.

- (a) If $\int_a^\infty f(x) dx$ is convergent, then $\int_a^\infty g(x) dx$ is convergent.
- (b) If $\int_a^\infty g(x) dx$ is divergent, then $\int_a^\infty f(x) dx$ is divergent.

Comparison Test For Improper Integrals

Ex 11: Is $\int_0^\infty e^{-x^2} dx$ convergent or divergent?

Comparison Test For Improper Integrals

Ex 12: Is $\int_1^\infty \frac{1+e^{-x}}{x} dx$ convergent or divergent?